

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

Topic summary and exercises:

(A) (xi) Introduction to Differentiation

Name:

Initial version by H. Lam, November 2014. Last updated June 15, 2024. Various corrections by students & members of the Mathematics Departments at North Sydney Boys High School and Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under CC CC BY 2.0. Exercises from Section 7.2.1 on page 45 are taken from Dougherty and Gieringer (2014, Ch 4, p.306). Picture credit: Weierstraß (page 7), Licensed under Public domain via Wikimedia Commons

Symbols used

Syllabus outcomes addressed

- Beware! Heed warning.
- (A) Mathematics Advanced content.
- (x1) Mathematics Extension 1 exclusive content.
- Literacy: note new word/phrase.
- Facts/formulae to memorise.
- On the course Reference Sheet.
- ICT usage
 - Enrichment content. Broaden your knowledge!

MA11-5 interprets the meaning of the derivative, determines the derivative of functions and applies these to solve simple practical problems

Syllabus subtopics

 ${\bf MA-C1}$ Introduction to Differentiation

Gentle reminder

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *Cambridge Year 11, 3 Unit* (Pender, Sadler, Shea, & Ward, 1999), or *Cambridge Year 11 2 Unit* (Pender, Sadler, Shea, & Ward, 2009a) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

Ι	The derivative	5
1	Limits and Continuity1.1Limits1.1.1Definition1.1.2Evaluating simple limits1.1.3Special limits resulting in $\frac{0}{0}$ or $\frac{\infty}{\infty}$ 1.2Continuity at $x = a$	6 6 8 9 11
2	Finding the derivative ("first principles")2.1 Goal2.2 Differentiability at $x = a$ 2.2.1 Exercises	14 15 17 18
3	Finding the derivative (shortcut) 3.1 Polynomial-like terms 3.2 Index laws 3.3 Expansions/partial fractions	19 19 20 21
4	Tangents and normals 4.1 Definitions 4.2 Examples	22 22 23
5	Other rules for finding the derivative 5.1 Chain rule	26 26 28 30
Π	The function and its subsequent derivatives	32
6	Values of $f'(x)$ 6.1 Increasing, decreasing, stationary at a point6.2 Stationary & turning points	33 33 37
7	The second derivative and concavity of a curve 7.1 Finding the second derivative 7.2 (xi) Parametric differentiation	39 39 41

		7.2.1 Exercises	45
	7.3	Concavity	46
		7.3.1 Change in concavity	47
	7.4	Graphs of successive derivatives	52
II	I A	pplications	55
8	Basi	ic rates of change	56
	8.1	Instantaneous vs Average Rate of Change	56
		8.1.1 Increase or decreasing, at an increasing/decreasing rate	60
R	eferei	nces	73

Part I

The derivative

Limits and Continuity

History

1Deierstraf

Karl Weierstraß (1815-1897), cited as the "father of modern analysis". Weierstraß left university without a degree, but studied and trained as a teacher.

Weierstraß' interest lie in the *soundness* of calculus. Prior to his time, some definitions regarding the foundations of calculus were insufficiently rigorous. His work resulted in the formalisation of the definition of the *limit* (as well as the *continuity* of a function):

The limit of f(x) as x approaches x_0 is L

 $\lim_{x \to x_0} f(x) = L$

exists if and only if for every value $\epsilon > 0$, there exists another number $\delta > 0$ such that $|x - x_0| < \delta$ makes $|f(x) - L| < \epsilon$ true.

Further reading: D Vikipedia

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO DIFFERENTIATION

When the limit of a rational function results in $\frac{0}{0}$ or $\frac{\infty}{\infty}$ • Factorise + cancel/simplify, or

- Divide numerator and denominators by the highest power of x to use the special limits.

Example 8

Evaluate the following limits:

Answer: (a) $-\frac{4}{7}$ (b) 1 (c) $\frac{5}{7}$ (d) ∞

(a)
$$\lim_{x \to 2} \frac{x^2 - 8x + 12}{x^2 + 3x - 10}$$
 (c)
$$\lim_{x \to \infty} \frac{5x^2 - x + 9}{7x^2 + 2x + 1}$$

(b)
$$\lim_{x \to \infty} \frac{x^2 - 8x + 12}{x^2 + 3x - 10}$$
 (d)
$$\lim_{x \to \infty} \frac{5x^3 - x + 9}{7x^2 + 2x + 1}$$

(A) Ex 9J ● Q3, 4, 6, 7

INTRODUCTION TO DIFFERENTIATION

 \mathbf{x} Ex 7I

NORMANHURST BOYS' HIGH SCHOOL

1.2 **Continuity at** x = a

A function is *continuous* at x = a iff $f(a) = \lim_{x \to a} f(x)$, i.e. its function value is equal to the full limit at that x coordinate.

Example 9

Determine whether the following functions are continuous at x = 1.

(a)
$$f(x) = \frac{x^2 - 5x + 4}{x - 1}$$
.
(b) $f(x) = \begin{cases} \frac{x^2 - 5x + 4}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$
(c) $f(x) = \begin{cases} \frac{x^2 - 5x + 4}{x - 1} & x \neq 1 \\ -3 & x = 1 \end{cases}$
(d) $f(x) = \begin{cases} \frac{3^x & x < 1}{7x - 4} & x = 1 \\ 5 - x^2 & x > 1 \end{cases}$

Figure 1.1 – Discontinuity of the Western Distributor (Sydney) near Anzac Bridge. Apple maps fail. Retrieved from www.smh.com.au galleries, 27/9/2012

Finding the derivative ("first principles")

Learning Goal(s)

🔳 Knowledge			🗘 Skills					💡 Und	erstanding
The first	principles	of	Find th	ne d	erivative	by	first	The	relation
differentiation			principle	\mathbf{s}				deriva	tive of a

The relation between the derivative of a function f(x) and its the rate of change

☑ By the end of this section am I able to:

- 7.1 Interpret the derivative as the gradient of the tangent to the graph of y = f(x) at a point x
- 7.2 Describe the gradient of a secant drawn through two nearby points on the graph of a continuous function as an approximation of the gradient of the tangent to the graph at those points, which improves in accuracy as the distance between the two points decreases
- 7.3 Interpret and use the difference quotient $\frac{f(x+h)-f(x)}{h}$ as the average rate of change of f(x) or the gradient of a chord or secant of the graph y = f(x)
- 7.4 Examine the behaviour of the difference quotient $\frac{f(x+h)-f(x)}{h}$ as $h \to 0$ as an informal introduction to the concept of a limit
- 7.5 Define the derivative f'(x) from first principles, as $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ and use the notation for the derivative: $\frac{dy}{dx} = f'(x) = y'$ where y = f(x)
- 7.29 An intuitive approach to differentiability

Definition 3

Calculus: the mathematical study of change.

2.1 **Goal**

To find the gradient to the curve. For curves, the gradient at a particular x value can be found by

• Finding the $\underbrace{}$ tangent $\underbrace{}$ to the curve at that x value.

y

• Evaluating the gradient of the tangent

Figure 2.1 – Gradient of the curve

Figure 2.2 – Approximating the gradient of the curve

GeoGebra Explore: diff.ggb

NORMANHURST BOYS' HIGH SCHOOL

Definition 4

16

The difference quotient:

 $\frac{f(x+h) - f(x)}{h}$

• As $h \to 0$, the secant will become the tangent

• Gradient of the secant

 $m = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$

• Take $h \to 0$:

Definition 5

The gradient function of f(x), denoted f'(x):

"x + h": $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

"
$$u \to x$$
": $f'(x) = \lim_{u \to x} \frac{f(u) - f(x)}{u - x}$

Other notation for the derivative:

 $\frac{dy}{dx}$ y'

Noun Derivative, gradient function Verb Differentiate

2.2.1 Exercises

Use the definition of the derivative to find f'(x). Question 5 onwards are more difficult.

1.	f(x) = 5 - 2x		9. 🔺	$f(x) = \frac{2}{\sqrt{2}}$
2.	f(x) = 10			\sqrt{x}
3.	$f(x) = 2x^2 + 3$		10. 🔒	$f(x) = x^{\frac{1}{2}\dagger}$
			11. 🌲	$f(x) = 2x^3$
4.	$f(x) = 3x^2 - 5x + 9$		12. 🖌	$f(x) = \sqrt[3]{x+1^{\ddagger}}$
5.	$\mathbf{A} f(x) = \sqrt{x}^*$		13.	$f(x) = x^4$
6.	$\mathbf{A} f(x) = \frac{3}{2}$		14.	$f(x) = \frac{x}{1 - \frac{1}{2}}$
	x + 2			x+1
7.	$f(x) = \sqrt{9 - 5x}$		15. 🛕	$f(x) = \frac{x+1}{x-1}$
8.	$\mathbf{A} f(x) = \frac{1}{r^2}$		16. 🛕	$f(x) = x^{\frac{2}{3}}$
		and the second	e de la companya de l	

Answers

1. -2 **2.** 0 **3.** 4x **4.** 6x - 5 **5.** $\frac{1}{2}x^{-\frac{1}{2}}$ **6.** $-3(x+2)^{-2}$ **7.** $-\frac{5}{2}(9-5x)^{-\frac{1}{2}}$ **8.** $-2x^{-3}$ **9.** $-x^{-\frac{3}{2}}$ **10.** $\frac{3}{2}x^{\frac{1}{2}}$ **11.** $6x^{2}$ **12.** $\frac{1}{3}(x+1)^{-\frac{2}{3}}$ **13.** $4x^{3}$ **14.** $(x+1)^{-2}$ **15.** $-2(x-1)^{-2}$ **16.** $\frac{2}{3}x^{-\frac{1}{3}}$

n an	n an
Further exercises	
(\mathbf{A}) Ex 8B	$(\mathbf{x}_1) \mathbf{E} \mathbf{x} 9 \mathbf{B}$
0110	
<mark>;</mark>	~ 02.0
	• 49-9
•••	$(x_1) \to 9L$
• 014	\bullet Ω_{1-8}
* <i>Hint:</i> use difference of squares	
<i>Hint</i> : rowrite as $\sqrt{r^3}$	
	<u>, e i e i e i e i e i e i e i e i e i e</u>
<i>Hint:</i> use difference of cubes	
INTRODUCTION TO DIFFERENTIATION	NORMANHURST BOYS' HIGH SCHOO

Finding the derivative (shortcut)

Knowledge The shortcut method for derivatives **Ø**₿ Skills

Find the derivative efficiently by applying the shortcut method

Vunderstanding

How to differentiate sums and differences of terms with coefficients

☑ By the end of this section am I able to:

- 7.8 Use the formula $\frac{d}{dx}(x^n) = nx^{n-1}$ for all real values of n
- 7.9 Differentiate a constant multiple of a function and the sum or difference of two functions

3.1 Polynomial-like terms

Theorem 2

If $f(x) = x^n$, where $n \in \mathbb{R}$, then

 $f'(x) = n x^{n-1}$

Laws/Results

Rules for differentiating polynomial-like terms:1. Derivative of a sum is the sum of derivatives.

$$\frac{d}{dx}\left[f(x) + g(x)\right] = \frac{d}{dx}\left[f(x)\right] + \frac{d}{dx}\left[g(x)\right]$$

2. Coefficients are "left alone"

$$\frac{d}{dx}\left[af(x)\right] = a\frac{d}{dx}\left[f(x)\right]$$

19

Important note

Use this shortcut hereforth unless the question asks for first principles!

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO DIFFERENTIATION

Tangents and normals

Learning Goal(s)

E Knowledge

1

The relation between the first derivative and tangents

📽 Skills

Finding the equation of tangents and normals to a curve

Vunderstanding

The first derivative as a gradient function

☑ By the end of this section am I able to:

7.10 Use the derivative in a variety of contexts, including finding the equation of a tangent or normal to a graph of a power function at a given point

4.1 **Definitions**

Definition 7

A tangent to the curve at x = a touches the curve at that point.

Definition 8

The *normal* to the curve at x = a is the line that is perpendicular to the tangent at x = a.

Diagram:

Important note

Use coordinate geometry methods to solve problems related to tangents and normals.

	10	E	xai	mp	le	19														••••									 		•
[E>	c 7D	Q1	[7]	\mathbf{S}	ho	w t	that	the	lin	e x	+	y +	- 2	=	0 i	s ta	ang	gent	to	y	=	x^3 ·	— 4	4x,	ar	nd	fin	d			
the	poir	it o	f c	ont	act	t.				11 1				2	0						C 1					1.					•
Hin	t: Fin	d the	equ		ons (oft	ne tan	igents	par	allel	to a	c + ;	y +	2 =	0, ε	ind s	shov	v tha	t on	ie o	f th	iem 1	s th	15 V	ery	line	•		 		
			• • • • •				· · · · · · · · · · · · · · · · · · ·																								•
																				••••									 		
									·											• • • •									 		
			*				• • • • • • • • • • • • • • • • • • •																								• • • • •
		•	• • • •																	•••••									 		
									· · · · · ·																				 		· · · · · ·
			•																									•			*
			•						·																				 		
			•				• • • • • • • • • • • • • • • • • • •																								• • • •
		•••••							· · · · · ·											••••									 		••••• • • •
																															•
	•••••																												 		
									·																				 		
			* · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· · · · ·																		· · · · ·			• • • •
•••••		· · · · · ·	· · · · · ·						· · · · · ·											••••			· · · · ·			••••			 		· · · · ·
			• • • • • •							· · · · · ·										•••••								· · · · · · · · · · · · · · · · · · ·	 		
			•				•			•																			 		
			•				· · · · ·																					*			· · · · · · · · · · · · · · · · · · ·
																				•••••								· · · · · ·	 		
			•																	• • • •									 		*
			•				· · · · · · · · · · · · · · · · · · ·																		•						
			- · · · · · · · · · · · · · · · · · · ·					*												• • • •	•				•				 	••••	· • • • •
			•				· · · · · · · · · · · · · · · · · · ·																						 		
			•				•	- - - - - - - - - - - -																					 		•
			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																					 		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·																											-	 		
																															· · · · · · ·

Important note

A Be careful with your notation! The following are two very different statements: • If $\frac{dy}{dx} = 4x^3 - 2x$, find the value of $\frac{dy}{dx}$ at x = -1

– Differential notation:

$$\frac{dy}{dx} = 4x^3 - 2x\Big|_x$$

- Function notation:

$$f'(-1) = 4x^3 - 2x$$

÷...

. . . .

• If $\frac{dy}{dx} = 4x^3 - 2x$, find the value of x where the gradient of the tangent is -1.

- Differential notation:

.

...

$$\frac{dy}{dx} = 4x^3 - 2x = -1$$

– Function notation:

$$f'(x) = 4x^3 - 2x = -1$$

Other rules for finding the derivative

Learning Goal(s)

E Knowledge

What is the product, quotient and chain rule

🗘 Skills

Identifying u and v to apply the product, quotient and chain rule

Vunderstanding

Which rule to apply when differentiating more complex functions

$\ensuremath{\boxdot}$ By the end of this section am I able to:

- 7.12 Understand and use the product, quotient and chain rules to differentiate functions of the form $f(x)g(x), \frac{f(x)}{g(x)}$ and f(g(x)) where f(x) and g(x) are functions
- 7.13 Further work with the chain rule

5.1 Chain rule

Theorem 3

If
$$y = f(u(x))$$
, then $f'(x) = f'(u) \times u'(x)$.

Alternatively,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Important note

• Look for an (outer) and (inner) function.

Example 20

Use the chain rule to differentiate: Answer: 1. $12(x^2+1)^5$ 2. $105(3x+4)^4$

1. $(x^2+1)^6$ **2.** $7(3x+4)^5$ **3.** $(ax+b)^n$ **4.** $\sqrt{25-x^2}$

OTHER RULES FOR FINDING THE DERIVATIVE - CHAIN RULE

Example 21 **[Ex 7E Q11]** Find the values of a and b if the parabola $y = a(x+b)^2 - 8$: has tangent y = 2x at the point P(4, 8)(a)has a common tangent with $y = 2 - x^2$ at the point A(1, 1). (b) **Answer:** (a) $a = \frac{1}{16}$, b = 12 (b) $a = \frac{1}{9}$, b = -10¹/₃ Further exercises (A) Ex 8G • Q2-17, 19 \mathbf{x} Ex 9E • Q2-12 NORMANHURST BOYS' HIGH SCHOOL INTRODUCTION TO DIFFERENTIATION

Other rules for finding the derivative - Product rule

5.2 Product rule

Theorem 4

If
$$y = u(x)v(x)$$
, then $f'(x) = u(x)v'(x) + v(x)u'(x)$

Alternatively,

$$\frac{dy}{dx} = uv' + vu'$$

Important note

- Look for a **product** of two functions
 - **A** Constants are *not* functions in this instance!
- Write down explicitly, the functions represented by u and v!

Example 22

Differentiate each function, expressing the result in fully factored form. Then state for what value(s) of x the derivative is zero.

1.
$$y = x(x-10)^4$$
 2. $y = x^2 (3x+2)^3$ **3.** $y = x\sqrt{x+3}$

Answer: 1.
$$5(x-10)^3(x-2), x=2, 10$$
 2. $x(3x+2)^2(15x+4), x=0, -\frac{2}{3}, -\frac{4}{15}$ 3. $\frac{3(x+2)}{2\sqrt{x+3}}, x=-2$

OTHER RULES FOR FINDING THE DERIVATIVE - QUOTIENT RULE

5.3 Quotient rule

If
$$y = \frac{u(x)}{v(x)}$$
, then $f'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{[v(x)]^2}$

Alternatively,

$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$

Important note

- Look for a **quotient** of two functions
- Write down explicitly, the functions represented by u and v!

Example 24

Differentiate, stating when the derivative is zero:

1. $\frac{2x+1}{2x-1}$

2.
$$\frac{\sqrt{x+1}}{r}$$

Answer: 1. $-\frac{4}{(2x-1)^2}$ 2. $\frac{-x-2}{2x^2\sqrt{x+1}}$

Part II

The function and its subsequent derivatives

Values of f'(x)

6.1 Increasing, decreasing, stationary at a point

Knowledge The first derivative represents the rate of change of a function **Skills** Determine when a function is increasing and decreasing

Vunderstanding

The relation between the first derivative and the behaviour of its graph

at

☑ By the end of this section am I able to:

7.16 Understand the concept of the derivative as a function

7.17 Sketch the derivative function (or gradient function) for a given graph of a function, without the use of algebraic techniques

Definition 9

A function f(x) is

• increasing at x = a if its derivative is positive at that point, i.e. $\frac{dy}{dx} \ge 0$

• decreasing at x = a if its derivative is negative that point, i.e.

 $\frac{dy}{dx} < 0$

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO DIFFERENTIATION

The graph of the cubic $f(x) = x^3 + ax^2 + bx + c$ passes through the origin and has a stationary point at A(2,2). Find a, b and c. Answer: $a = -\frac{9}{2}, b = 6, c = 0$

Further exercises

(A) Ex 3B (Y12 textbook) • Q2-15

INTRODUCTION TO DIFFERENTIATION

(x1) Ex 4B (Y12 textbook)

Section 7

The second derivative and concavity of a curve

If the first derivative measures the <u>change</u> of f(x), the second derivative measures the <u>change</u> of the <u>change</u>.

		:				:								÷				-				:		d^2y	-		d	$\int d$	u	-
 Ν	ota	ati	on:	-	den	ote	ed	in	one	e of	th	e f	ollo	OW	ing	Wa	iys:	•	f''	(x))		٠	$\frac{d}{dx^2}$	-	•	$\frac{1}{dx}$	$\left(\frac{1}{d}\right)$	$\left(\frac{x}{r}\right)$	Ľ.
		:		-				:				:				-		-		-		:	-	au	-		i	100		

7.2 (x1) Parametric differentiation

Theorem 6

Derivatives of parametric equations require the chain rule

First derivative

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

Second derivative

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \times \frac{dt}{dx}$$

Example 36

(Fitzpatrick & Aus, 2019, Ex 7.5 Q4)

(a) If x = 4t and $y = 2t^2$, find the expression for $\frac{dy}{dx}$ in terms of t.

(b) Hence find the expression for $\frac{dy}{dx}$ in terms of x.

Answer: (a) $\frac{dy}{dx} = t$ (b) $\frac{dy}{dx} = \frac{x}{4}$

44

- (Fitzpatrick & Aus, 2019, Ex 7.5 Q7) (a) If $x = t^2 + 4t$ and $y = 3t + t^3$, find the expression for $\frac{dy}{dx}$ in terms of t.
- If $\frac{dy}{dx} = 1$, find the values of x. (b)
- Find $\frac{d^2y}{dx^2}$ as a function of t. (c)

Answer: (a) $\frac{dy}{dx} = \frac{3(1+t^2)}{2(t+2)}$ (b) $x = -\frac{11}{9}$ or 5 (c) $\frac{d^2y}{dx^2} = \frac{3(t^2+4t-1)}{4(t+2)^3}$

7.2.1 Exercises

(Fitzpatrick & Aus, 2019, Chapter Review 7)

1. Given $x = t^2 - 1$ and $y = t^3$, find as a function of t:

(a)
$$\frac{dy}{dx}$$
 (b) $\frac{d^2y}{dx^2}$

2. Given x = 40t and $y = 56t - 16t^2$, find the expression for $\frac{dy}{dx}$.

3. (a) If
$$x = 2\left(t + \frac{1}{t}\right)$$
, $y = 2\left(t - \frac{1}{t}\right)$, find an expression for $\frac{dy}{dx}$ in terms of t .

(b) Find
$$\frac{d^2y}{dx^2}$$
 as a function of t .

(Pender et al., 1999, Ex 7K)

- 4. (a) Use parametric differentiation to differentiate the function defined by $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$, and find the tangent and normal at the point T where t = 2.
 - (b) Eliminate t from these equations, and use implicit parametric differentiation to find the gradient of the curve at the same point T. [HINT: Square x and y and subtract.]

Answers

1. (a) $\frac{dy}{dx} = \frac{3t}{2}$ (b) $\frac{d^2y}{dx^2} = \frac{3}{4t}$ **2.** $\frac{dy}{dx} = \frac{7-4t}{5}$ **3.** (a) $\frac{dy}{dx} = \frac{t^2+1}{t^2-1}$ (b) $\frac{d^2y}{dx^2} = \frac{-2t^3}{(t^2-1)^3}$ **4.** (a) $y' = \frac{t^2+1}{t^2-1}$, tangent: 5x - 3y = 8, normal: 3x + 5y = 15 (b) $x^2 - y^2 = 4$

7.3 Concavity

46

Definition 13

A curve concaves

• up at a point x = a when its second derivative at that point is positive

f''(a) > 0

down at a point x = a when its second derivative at that point is

negative

f''(a) < 0

Laws/Results

Consequences for stationary points A stationary point coinciding where the curve concaves:

- up: local minimum
- down: local maximum

7.3.1 Change in concavity

Definition 14

Draw

A point of inflexion occurs on when the concavity of the curve changes, from concave up to concave down and vice versa. At all points of inflexion, f''(x) = 0.

Important note

four examples of points of inflexion.

- Geometrically, a point of inflexion is a point where the tangent crosses the curve, i.e. the curve must 'curl away' from the tangent on opposite sides of the tangent.
- Example where f''(x) = 0 but does not give a point of inflexion $-f(x) = x^4$ around x = 0. Concavity does not change here!

NORMANHURST BOYS' HIGH SCHOOL

Definition 15

A horizontal point of inflexion occurs when the derivative f'(x) = 0 also where the concavity changes.

Example 40

[2007 HSC Q6/Ex 10E] Use the second derivative, if possible, to determine the nature of the stationary points of the graph of $f(x) = x^4 - 4x^3$. Find also any points of inflexion, examine the concavity over the whole domain, and sketch the curve.

[2013 2U HSC Q12] (2 marks) The cubic $y = ax^3 + bx^2 + cx + d$ has a point of inflexion at x = p.

Show that $p = -\frac{b}{3a}$.

Using the following information, sketch the graph of y = f(x):

• f(0) = 0

• f''(x) > 0 when x < 0

- f'(x) > 0 for all x
- f''(0) = 0

• f''(x) < 0 when x > 0

			Fva	mnte	АЛ										• • • • • • •	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·
[20	12	HS	SC Q	14]	A fui	nction	is	giv	en b	у <i>f</i>	(x)	=	$3x^2$	¹ +	4x	.3 _	$12x^{2}$	2.					•
i.	F t	⁷ ino hei	l the r nat	coor	dinat	tes of	the	e st	tatio	nar	уp	ooir	nts	of	f(<i>x</i>) a	nd	det	err	nir	ne	3	
ii.	ŀ	Ien	ce, sl	ketch	the g	graph	of g	y =	f(x) sł	now	ing	; th	ne s	tat	iona	ry p	ooii	nts	•		2	2
iii.	F	For	what	valu	es of	$x ext{ is t}$	he	fun	ctior	ı in	crea	asir	ıg?									1	
iv.	F	For	what	valu	es of	k will	3x	4+	$\cdot 4x^3$]	12x	$^{2} +$	k	= () h	ave 1	10 S	olu	tio	n?		 1	-
															•							 	••••
							: : : :															 	
							÷									· · · · · · · · · · · · · · · · · · ·	· · · · · ·					 	
- - - -		····.;·			· · · · · · · · · · · · · · · · · · ·		: 			•												 	••••
							÷		•••••		· · · · · · · · · · · · · · · · · · ·					••••	· · · · · · · · · · · · · · · · · · ·					 	
							• • •								- - - - - - - - - - - - - - - - - - -								
							·····		•••••	• • • • • • •	•;••••• • • • •	<u>.</u>			• • • • •	••••	• • • • • • •	(• • • • • • • • • • • • • • • • • • •				 	••••
																•••••							
•							· · · · · · ·								•							 	
																• • • • • •							
• • • •							· · · · · · · · · · · · · · · · · · ·															 	
															•							 	
- - - -																						 	
· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·							 	
											· · · · ·				• • • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·				 	
• • • • •															• • • • • •	· · · · · · · · · · · · · · · · · · ·							•••••

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO DIFFERENTIATION

Relationship between f(x), f'(x) and f''(x)

	Significance of feature w.r.t. $f(x)$										
Feature	f(x) $f'(x)$	f''(x)									
Zero crossing											
Turning point		N/A									
Pt of inflexion of f		f''(x) = 0									
HPOI of f		f''(x) = 0									

Calculus grapher 🖵 📝 http://phet.colorado.edu/en/simulation/calculus-grapher

Example 45

The diagram shows the graph of a function y = f(x). Sketch its derivative f'(x) on the same set of axes.

[2011 HSC Q9] (3 marks) The graph y = f(x) in the diagram has a stationary point when x = 1, a point of inflexion when x = 3, and a horizontal asymptote y = -2.

Sketch the graph of y = f'(x), clearly indicating its features at x = 1 and at x = 3, and the shape of the graph (as) $x \to \infty$.

Part III

Applications

Section 8

Basic rates of change

Learning Goal(s)

E Knowledge

The difference between instantaneous and average rate of change Solve problems involving rates of change using derivatives

Vunderstanding

The real-life implications of the first and second derivative functions

Solution By the end of this section am I able to:

7.18 Consider average rate of change and relate this to instantaneous rate of change

- 7.19 Interpret and use the derivative at a point as the instantaneous rate of change of a function at that point
- 7.20 Calculate derivatives of power functions to solve problems, including finding an instantaneous rate of change of a function in both real life and abstract situations
- 7.23 Interpret the derivative as a measure of instantaneous rate of change.
- 7.24 Describe the behaviour of a function and its tangent at a point, using language including increasing, decreasing, constant, stationary, increasing at an increasing rate
- 7.26 Solve a variety of problems involving (simple) rates of change

8.1 Instantaneous vs Average Rate of Change

Definition 16

If a quantity is measured by Q, then the

- Instantaneous rate of change is $\frac{dQ}{dt}$, i.e. gradient of <u>tangent</u>.
- Average rate of change is $\frac{Q_2 Q_1}{t_2 t_1}$, where Q_1, Q_2 are the quantities at the start and finish of the times measured, and the difference between t_1 and t_2 is the time elapsed, i.e. gradient of secant

Draw example of how to measure average and instantaneous rates of change.

The average rate of change between t = 2 and t = 4. A new function that describes the rate of change The instantaneous rate of change when t = 4. **Answer:** (a) 4 (b) 2t - 2 (c) 6

Example 50

Example 49 If $f(t) = t^2 - 2t + 4$, find

(a)

(b)

(c)

A javelin is thrown so that its height, h metres above the ground, is given by the rule: $h(t) = 20t - 5t^2 + 2$, where t represents time in seconds.

- Find the rate of change of the height at any time, t. (a)
- (b) Find the rate of change of the height when

t = 1ii. t = 2iii. i. t = 3

- (c) Briefly explain why the rate of change is initially positive, then zero, and then negative over the first 3 seconds.
- (d)Find the rate of change of the height when the javelin first reaches a height of 17 metres.

Answer: (a) 20 - 10t (b) i. 10 ms^{-1} ii. 0 ms^{-1} iii. -10 ms^{-1} (c) Explain. (d) 10 ms^{-1}

(Pender, Sadler, Shea, & Ward, 2009b, p.260) A cockroach plague hit the suburb of Berrawong last year, but was gradually brought under control. The council estimated that the cockroach population P, in millions, t months after 1st January, was given by

 $P = 7 + 6t - t^2$

- (a) Differentiate to find the rate of change $\frac{dP}{dt}$ of the cockroach population.
- (b) Find the cockroach population on 1st January and the rate at which the population was increasing at that time.
- (c) When did the council manage to stop the cockroach population increasing any further, and what was the population then?
- (d) When were the cockroaches finally eliminated?
- (e) What was the average rate of increase in the population from 1st January to 1st April?

A water tank is being emptied and the quantity of water, Q litres, remaining in the tank at any time, t minutes, after it starts to empty is given by:

$$Q(t) = 1000(20 - t)^2$$

- (a) At what rate is the tank being emptied at any time t?
- (b) How long does it take to empty the tank?
- (c) At what time is the water flowing out at the rate of 20 000 litres per minute?
- (d) What is the average rate at which the water flows out in the first 5 minutes?

8.1.1 Increase or decreasing, at an increasing/decreasing rate

Strange English grammar ahead!

Definition 17	
	 Increasing at an <u>increasing</u> rate Observation: dy/dx > 0 and d²y/dx² > 0 The rate of increase, is <u>increasing</u>
Definition 18	
	 Increasing at a <u>decreasing</u> rate Observation: dy/dx > 0 and d²y/dx² < 0 The rate of increase, is <u>decreasing</u>
Definition 19	
	 Decreasing at an <u>increasing</u> rate Observation: dy/dx < 0 and d²y/dx² < 0 The rate of decrease, is <u>increasing</u>
Definition 20	
The second	 Decreasing at a <u>decreasing</u> rate Observation: dy/dx < 0 and d²y/dx² > 0 The rate of decrease, is <u>decreasing</u>

Describe briefly how the level of this pollutant has changed over this period of time. Include mention of the rate of change.

Example 54

[1997 2U HSC] The rate of inflation measures the rate of change in prices. Between January 1996 and December 1996, prices were rising but the rate of inflation was falling. Draw a graph of prices as a function of time that fits this description.

NORMANHURST BOYS' HIGH SCHOOL

[2000 2U HSC] The number N of students logged onto a website at any time over a five-hour period is approximated by the formula

 $N = 175 + 18t^2 - t^4 \quad 0 \le t \le 5$

(i) What was the initial number of students logged onto the website? 1
(ii) How many students were logged onto the website at the end of the five hours?
(iii) What was the maximum number of students logged onto the website? 2
(iv) When were the students logging onto the website most rapidly? 2
(v) Sketch the curve
$$N = 175 + 18t^2 - t^4$$
 for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t \le 5$. 2
(v) Sketch the curve $N = 175 + 18t^2 - t^4$ for $0 \le t$

[2002 2U Q7] A cooler, which is initially full, is drained so that at time t seconds the volume of water V, in litres, is given by

$$V = 25\left(1 - \frac{t}{60}\right)^2$$
 for $0 \le t \le 60$

- (i) How much water was initially in the cooler?
- (ii) After how many seconds was the cooler one-quarter full?
- (iii) At what rate was the water draining out when the cooler was one-quarter full?

NORMANHURST BOYS' HIGH SCHOOL

1

 $\mathbf{2}$

 $\mathbf{2}$

[2000 3U Q7] \blacktriangle The amount of fuel F in litres required *per hour* to propel a plane in level flight at constant speed u km/h is given by

$$F = Au^3 + \frac{B}{u}$$

where A and B are positive constants.

(i) Show that a pilot wishing to remain in level flight for as long a period as possible should fly at

$$\left(\frac{B}{3A}\right)^{\frac{1}{4}}$$
 km/h

(ii) Show that a pilot wishing to fly as far as possible in level flight should fly approximately 32% faster than the speed given in part (i).

INTRODUCTION TO DIFFERENTIATION

 $\mathbf{2}$

 $\mathbf{2}$

1 If $f(x) = x^2 + 5x + 15$ find:

- the average rate of change between x = 3 and x = 5
- **b** a new function that describes the rate of change
- c the (instantaneous) rate of change when x = 5.
- **2** A balloon is inflated so that its volume, $V \text{ cm}^3$, at any time, t seconds later is:

$$V = -\frac{8}{5}t^3 + 24t^2, t \in [0, 10]$$

- **a** What is the volume of the balloon when:
- i t = 0? i t = 10?
- **b** Hence, find the average rate of change between t = 0 and t = 10. **c** Find the rate of change of volume when
- i t = 0 ii t = 5

3 multiple choice

The average rate of change between x = 1 and x = 3 for the function $y = x^2 + 3x + 5$ is: **A** 1 **B** 9 **C** 5 **D** 3 **E** 7

4 multiple choice

The instantaneous rate of change of the function $f(x) = x^3 - 3x^2 + 4x$, when x = -2 is: **A** 2 **B** -2 **C** 28 **D** 3 **E** 12

5 multiple choice

If the rate of change of a function is described by $\frac{dy}{dx} = 2x^2 - 7x$, then the function could be: **A** $y = 6x^3 - 14x$ **B** $y = \frac{2}{3}x^3 - 7x$ **C** $y = \frac{2}{3}x^3 - \frac{7}{2}x^2 + 5$ **D** $y = x^3 - \frac{7}{2}x^2 + 2$ **E** $2x^2 - 7x + 5$

In a baseball game the ball is hit so that its height above the ground, h metres, is $h(t) = 1 + 18t - 3t^2$

$$n(t) = 1 + 10t = 3t$$

- t seconds after being struck.
- a Find the rate of change, h'(t). b Calculate the rate of change
- of height after: i 2 seconds
- i 3 seconds
- iii 4 seconds.
- c What happens when
- t = 3 seconds?
- **d** Find the rate of change of height when the ball first
- reaches a height of 16 metres.

t = 10.

65

be

bet

The position, x metres, of a lift (above ground level) at any time, t seconds, is given by: $x(t) = -2t^2 + 40t$ G Find the rate of change of displacement (velocity) at any time, t. **b** Find the rate of change when: ii t = 9t = 5t = 11.• What happened between t = 9 and t = 11? d When and where is the rate of change zero? 8 The number of seats, N, occupied in a soccer stadium t hours after the gates are opened is given by: $N = 500t^2 + 3500t, t \in [0, 5]$ • Find *N* when: t = 1 and t = 3. **b** What is the average rate of change between t = 1 and t = 3? **c** Find the instantaneous rate when: t = 0 ii t = 1 iii t = 3 iv t = 4. d Why is the rate increasing in the first 4 hours? The weight, W kg, of a foal at any time, t weeks, after birth is given by: $W = 80 + 12t - \frac{3}{10}t^2$ where 0 < t < 20• What is the weight of the foal at birth? **b** Find an expression for the rate of change of weight at any time, *t*. **c** Find the rate of change after: 5 weeks ii 10 weeks iii 15 weeks. d Is the rate of change of the foal's weight increasing or decreasing? e When does the foal weigh 200 kg? 10 The weekly profit, P (hundreds of dollars), of a factory is given by $P = 4.5n - n^{\frac{3}{2}}$, where *n* is the number of employees. **a** Find $\frac{\mathrm{d}P}{\mathrm{d}n}$ **b** Hence, find the rate of change of profit, in dollars per employee, if the number of employees is: **i** 4 **ii** 16 iii 25. • Find *n* when the rate of change is zero. 11 Gas is escaping from a cylinder so that its volume, $V \text{ cm}^3$, t seconds after the leak starts, is described by $V = 2000 - 20t - \frac{1}{100}t^2$ • Find the rate of change after: i 10 seconds ii 50 seconds iii 100 seconds. **b** Is the rate of change ever positive? Why? 12 Assume an oil spill from an oil tanker is circular and remains that way. **a** Write down a relationship between the area of the spill, $A m^2$, and the radius, r metres. **b** Find the rate of change of A with respect to the radius, r. • Find the rate of change of A when the radius is: i 10 m **ii** 50 m ii 100 m. **d** Is the area increasing more rapidly as the radius increases? Why?

.

66

INTRODUCTION TO DIFFERENTIATION

NORMANHURST BOYS' HIGH SCHOOL

NORMANHURST BOYS' HIGH SCHOOL

17 A bushfire burns out A hectares of land, t hours after it started according to the rule $A = 90t^2 - 3t^3$

- a At what rate, in hectares per hour, is the fire spreading at any time, t?
 b What is the rate when t equals:
 i 0 ii 4 iii 8 iv 10 v 12 vi 16 vii 20?
- **c** Briefly explain how the rate of burning changes during the first 20 hours.
- d Why isn't there a negative rate of change in the first 20 hours?
- e What happens after 20 hours?
 - After how long is the rate of change equal to 756 hectares per hour?

CHAPTER 9 Applications of 12 a $A = \pi r^2$ b $\frac{dA}{dr} = 2\pi r$ differentiation c i $20\pi m^2/m$ ii $100\pi m^2/m$ iii $200\pi m^2/m$ Exercise 9A — Rates of change d Yes, because $\frac{dA}{dr}$ is increasing. 1 a 13 b f'(x) = 2x + 5 c f'(5) = 15 d Yes, because $\frac{dA}{dr}$ is increasing. 2 a i V = 0 cm³ ii V = 800 cm³ 13 a $V = \frac{4}{3}\pi r^3$ b $\frac{dV}{dr} = 4\pi r^2$ b 80 cm³/s c i 0 cm³/s ii 120 cm³/s iii 0 cm³/s c i 0.04\pi m³/m or 0.13 m³/m 3 E 4 C 5 C 14 a Length = 2h, width = 2h

- b i 6 m/s ii 0 m/s iii -6 m/s
 c The ball stops rising, that is, it reaches its highest point.
 d 12 m/s
 7 a dx/dt = -4t + 40 b i 20 m/s ii 4 m/s iii -4 m/s
- **c** The lift changed direction. **d** t = 10 s and x = 200 m
- 8 a i 4000 ii 15 000 b 5500 people per hour c i 3500 people/hour ii 4500 people/hour
- iii 6500 people/hour iv 7500 people/hour d More people arrive closer to starting time.
- 9 a 80 kg b $\frac{dW}{dt} = 12 0.6t$ c i 9 kg/week ii 6 kg/week iii 3 kg/week d Decreasing e 20 weeks
- **10 a** $\frac{\mathrm{d}P}{\mathrm{d}n} = 4.5 1.5 n^{\frac{1}{2}}$
- b i \$37.50 ii -\$9.38 iii -\$12.00 c n = 911 a i -20.2 cm³/s ii -21 cm³/s iii -22 cm³/s b No, because the volume is always decreasing.

13 a $V = \frac{4}{3}\pi r^3$ b $\frac{dV}{dr} = 4\pi r^2$ c i 0.04π m³/m or 0.13 m³/m ii 0.16π m³/m or 0.50 m³/m iii 0.36π m³/m or 1.13 m³/m **14** a Length = 2h, width = 2hb $V = 4h^3$ c i 12 m³/m ii 48 m³/m iii 108 m³/m **15** a x = 2h b $V = 6\sqrt{3}h^2$ c i $\frac{dV}{dh} = 6\sqrt{3}$ ii $\frac{dV}{dh} = 12\sqrt{3}$

- **16** a $\frac{dy}{dx} = -0.00006x^2 + 0.012x$
 - **b** i 0.384 ii 0.6 iii 0.384 iv 0.216 **c** x = 50 and x = 150 **d** 12.5 < y < 67.5
- **17** a $\frac{dA}{dt} = 180t 9t^2$ hectares/hour b i 0 ii 566 iii 864 iv 900 v 864 vi 576
 - vii 0 (all hectares/hour)
 c The fire spreads at an increasing rate in the first 10 hours, then at a decreasing rate in the next 10
 - d The fire is spreading, the area burnt out by a fire
 - does not decrease;The fire stops spreading; that is, the fire is put out or contained to the area already burnt.
 - **f** t = 6 and t = 14 hours.

NESA Reference Sheet – calculus based courses

Trigonometric Functions

 $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $C^{2} = a^{2} + b^{2} - 2ab\cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ $l = r\theta$ $A = \frac{1}{2}r^{2}\theta$ $\frac{60^{\circ}}{1}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

$$E(X) = \mu$$

 $\sqrt{3}$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^nC_r p^r (1 - p)^{n - r}}$$

$$X \sim Bin(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x} p^x (1 - p)^{n - x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1 - p)$$

- 2 -

Differential Calculus		Integral Calculus							
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{1} [f(x)]^{n+1} + c$							
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f(x)[f(x)] dx = \frac{1}{n+1}[f(x)] + c$ where $n \neq -1$							
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$							
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$							
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$							
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$							
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) = \int f'(x) dx$							
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$							
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$							
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$							
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f'(x)}{dx - \frac{1}{2} \tan^{-1} f(x)} dx = \frac{1}{2} \tan^{-1} \frac{f(x)}{dx} + c$							
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int a^2 + [f(x)]^2 a^{a} a^{a} a^{a} a^{a} a^{a}$							
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$							
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$							
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \left\{ f(a) + f(b) + 2 \left\lfloor f(x_1) + \dots + f(x_{n-1}) \right\rfloor \right\}$ where $a = x_0$ and $b = x_n$							
	- 3	3 —							

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \right| \underline{v} \left| \cos \theta = x_1 x_2 + y_1 y_2 \right|, \\ \\ \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \\ \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{array} \end{split}$$

 $r_{\tilde{u}} = a + \lambda b_{\tilde{u}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority
References

- Dougherty, M. M., & Gieringer, J. (2014). First year calculus for students of mathematics and related disciplines. Southwestern Oklahoma State University.
- Fitzpatrick, J. B., & Aus, B. (2019). New Senior Mathematics Extension 1 for Years 11 & 12. Pearson Education.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (1999). Cambridge Mathematics 3 Unit Year 11 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (2009a). Cambridge Mathematics 2 Unit Year 11 (2nd ed.). Cambridge University Press.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (2009b). Cambridge Mathematics 2 Unit Year 12 (2nd ed.). Cambridge University Press.